Clinical Classification
Usage
classification(
data,
dep,
indep,
testSize = 0.33,
noOfFolds = 10,
testing,
reporting = list("classifMetrices"),
classifier,
minSplit = 20,
minBucket = 0,
complexity = 0.01,
maxCompete = 4,
maxSurrogate = 5,
unsurrogate = 2,
noCrossValidations = 10,
maxDepth = 30,
noOfTrees = 10,
maxDepthRandFor = 30,
sampleFraction = 1,
splitRule,
knnNeighbors = 5,
knnDistance = "euclidean",
svmKernel = "radial",
svmCost = 1,
svmGamma = 1,
plotDecisionTree = FALSE,
predictedFreq = FALSE,
printRandForest = FALSE,
predictedFreqRF = FALSE,
balancingMethod = "none",
clinicalCutoff = 0.5,
validateMethod = "holdout",
bootstrapSamples = 1000,
reportClinicalMetrics = TRUE,
reportConfidenceIntervals = TRUE
)
Arguments
- data
.
- dep
.
- indep
.
- testSize
.
- noOfFolds
.
- testing
.
- reporting
.
- classifier
.
- minSplit
.
- minBucket
.
- complexity
.
- maxCompete
.
- maxSurrogate
.
- unsurrogate
.
- noCrossValidations
.
- maxDepth
.
- noOfTrees
.
- maxDepthRandFor
.
- sampleFraction
.
- splitRule
.
- knnNeighbors
Number of nearest neighbors for KNN classification.
- knnDistance
.
- svmKernel
.
- svmCost
Regularization parameter for SVM.
- svmGamma
Kernel coefficient for SVM (used in RBF, polynomial, sigmoid kernels).
- plotDecisionTree
.
- predictedFreq
.
- printRandForest
.
- predictedFreqRF
.
- balancingMethod
Method for handling class imbalance in medical datasets.
- clinicalCutoff
Probability threshold for clinical decision making.
- validateMethod
Validation method for clinical model assessment.
- bootstrapSamples
Number of bootstrap samples for confidence intervals.
- reportClinicalMetrics
Report sensitivity, specificity, PPV, NPV, and likelihood ratios.
- reportConfidenceIntervals
Include 95\ clinical metrics.
Value
A results object containing:
results$modelSettings | a html | ||||
results$confusion$matrix | a table | ||||
results$classificationMetrics$general | a table | ||||
results$classificationMetrics$clinicalMetrics | a table | ||||
results$classificationMetrics$class | a table | ||||
results$rocCurvePlot | an image | ||||
results$decisionTreeModel | an image | ||||
results$predictedFreqPlot | an image | ||||
results$printRandForest$randomForestModel | a table | ||||
results$text | a preformatted |