Skip to contents
library(ClinicoPath)
#> Error in get(paste0(generic, ".", class), envir = get_method_env()) : 
#>   object 'type_sum.accel' not found
data("histopathology")
dplyr::glimpse(histopathology)
#> Rows: 250
#> Columns: 38
#> $ ID                   <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15…
#> $ Name                 <chr> "Tonisia", "Daniyah", "Naviana", "Daerion", "Tamy…
#> $ Sex                  <chr> "Male", "Female", "Male", "Male", "Female", "Fema…
#> $ Age                  <dbl> 27, 36, 65, 51, 58, 53, 33, 26, 25, 68, 34, 45, 3…
#> $ Race                 <chr> "White", "White", "White", "White", "Black", "Whi…
#> $ PreinvasiveComponent <chr> "Present", "Absent", "Absent", "Absent", "Absent"…
#> $ LVI                  <chr> "Present", "Absent", "Absent", "Present", "Absent…
#> $ PNI                  <chr> "Absent", "Absent", "Absent", "Absent", "Absent",…
#> $ LastFollowUpDate     <chr> "2019.10.22 00:00:00", "2019.06.22 00:00:00", "20…
#> $ Death                <chr> "YANLIŞ", "DOĞRU", "DOĞRU", "YANLIŞ", "YANLIŞ", "…
#> $ Group                <chr> "Control", "Treatment", "Control", "Treatment", "…
#> $ Grade                <dbl> 2, 2, 1, 3, 2, 2, 1, 2, 3, 3, 3, 1, 1, 1, 2, 1, 2…
#> $ TStage               <dbl> 4, 4, 4, 4, 1, 4, 2, 3, 4, 4, 3, 2, 2, 2, 4, 4, 2…
#> $ `Anti-X-intensity`   <dbl> 3, 2, 2, 3, 3, 3, 2, 2, 1, 2, 3, 3, 3, 1, 3, 3, 3…
#> $ `Anti-Y-intensity`   <dbl> 1, 1, 2, 3, 3, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 3, 2…
#> $ LymphNodeMetastasis  <chr> "Present", "Absent", "Absent", "Absent", "Absent"…
#> $ Valid                <chr> "YANLIŞ", "DOĞRU", "YANLIŞ", "DOĞRU", "DOĞRU", "D…
#> $ Smoker               <chr> "YANLIŞ", "YANLIŞ", "DOĞRU", "YANLIŞ", "DOĞRU", "…
#> $ Grade_Level          <chr> "high", "low", "low", "high", "low", "moderate", …
#> $ SurgeryDate          <chr> "2019.07.08 00:00:00", "2019.03.18 00:00:00", "20…
#> $ DeathTime            <chr> "Within1Year", "Within1Year", "Within1Year", "Wit…
#> $ int                  <chr> "2019-07-08 UTC--2019-10-22 UTC", "2019-03-18 UTC…
#> $ OverallTime          <dbl> 3.5, 3.1, 3.1, 4.9, 3.3, 9.3, 6.3, 9.0, 5.8, 9.9,…
#> $ Outcome              <dbl> 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, N
#> $ Mortality5yr         <chr> "Alive", "Dead", "Dead", "Alive", "Alive", "Alive…
#> $ `Rater 1`            <dbl> 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, N
#> $ `Rater 2`            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
#> $ `Rater 3`            <dbl> 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1…
#> $ `Rater A`            <dbl> 3, 2, 3, 3, 2, 3, 1, 1, 2, 1, 1, 3, 3, 1, 3, 2, 3…
#> $ `Rater B`            <dbl> 3, 2, 3, 3, 2, 3, 1, 1, 2, 1, 1, 3, 3, 1, 3, 2, 3…
#> $ `New Test`           <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1…
#> $ `Golden Standart`    <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1…
#> $ MeasurementA         <dbl> -1.634318251, 0.370706042, 0.015853764, -1.235844…
#> $ MeasurementB         <dbl> 0.611415041, 0.554385763, 0.742388876, 0.62184265…
#> $ `Disease Status`     <chr> "Ill", "Ill", "Healthy", "Ill", "Healthy", "Ill",…
#> $ Measurement1         <dbl> 0.38663133, 0.82938032, 0.15875305, 2.44735406, 0…
#> $ Measurement2         <dbl> 1.86537533, 0.54248017, 0.07008299, 2.40713373, 0…
#> $ Outcome2             <chr> "DOD", "DOOC", "AWD", "AWOD", "DOD", "DOOC", "AWD…
ClinicoPath::agepyramid(
    data = histopathology,
    age = Age,
    gender = Sex,
    female = "Female")
#> 
#>  AGE PYRAMID
#> 
#>  Population Data                  
#>  ──────────────────────────────── 
#>    Population    Female    Male   
#>  ──────────────────────────────── 
#>    (70,73]            8       5   
#>    (65,70]           17      11   
#>    (60,65]           16      10   
#>    (55,60]           14      17   
#>    (50,55]            8      11   
#>    (45,50]            8      15   
#>    (40,45]           19      14   
#>    (35,40]           13      15   
#>    (30,35]            6      13   
#>    (25,30]           10      17   
#>    (20,25]            1           
#>  ────────────────────────────────

age_pyramid <-
ClinicoPath::agepyramid(
    data = histopathology,
    age = Age,
    gender = Sex,
    female = "Female")
age_pyramid$pyramidTable
#> 
#>  Population Data                  
#>  ──────────────────────────────── 
#>    Population    Female    Male   
#>  ──────────────────────────────── 
#>    (70,73]            8       5   
#>    (65,70]           17      11   
#>    (60,65]           16      10   
#>    (55,60]           14      17   
#>    (50,55]            8      11   
#>    (45,50]            8      15   
#>    (40,45]           19      14   
#>    (35,40]           13      15   
#>    (30,35]            6      13   
#>    (25,30]           10      17   
#>    (20,25]            1           
#>  ────────────────────────────────
age_pyramid$pyramidTable$asDF
#>        Pop Female Male
#> 1  (70,73]      8    5
#> 2  (65,70]     17   11
#> 3  (60,65]     16   10
#> 4  (55,60]     14   17
#> 5  (50,55]      8   11
#> 6  (45,50]      8   15
#> 7  (40,45]     19   14
#> 8  (35,40]     13   15
#> 9  (30,35]      6   13
#> 10 (25,30]     10   17
#> 11 (20,25]      1   NA
age_pyramid$plot

age_pyramid$plot$state
#> # A tibble: 21 × 3
#> # Groups:   Gender, Pop [21]
#>    Gender Pop         n
#>    <chr>  <ord>   <int>
#>  1 Female (20,25]     1
#>  2 Female (25,30]    10
#>  3 Female (30,35]     6
#>  4 Female (35,40]    13
#>  5 Female (40,45]    19
#>  6 Female (45,50]     8
#>  7 Female (50,55]     8
#>  8 Female (55,60]    14
#>  9 Female (60,65]    16
#> 10 Female (65,70]    17
#> # ℹ 11 more rows
age_pyramid$plot$plot

temp_file_png <- tempfile(fileext = ".png")
age_pyramid$plot$saveAs(paste0(temp_file_png, ".png"))
#> [1] TRUE

age_pyramid_plot <- png::readPNG(paste0(temp_file_png, ".png"))

temp_file_tiff <- tempfile(fileext = ".tiff")

tiff::writeTIFF(what = age_pyramid_plot,
                where = paste0(temp_file_tiff, ".tiff"),
                compression = "LZW")
#> [1] 1
htmlTable::htmlTable(
  kableExtra::kable(
    age_pyramid$pyramidTable$asDF
    ))
|Pop | Female| Male| |:——-|——:|—-:| |(70,73] | 8| 5| |(65,70] | 17| 11| |(60,65] | 16| 10| |(55,60] | 14| 17| |(50,55] | 8| 11| |(45,50] | 8| 15| |(40,45] | 19| 14| |(35,40] | 13| 15| |(30,35] | 6| 13| |(25,30] | 10| 17| |(20,25] | 1| NA|

Age Pyramid

agepyramidClass

Age Pyramid

alluvial()

Alluvial Diagrams

alluvialClass

Alluvial Plot

benford()

Benford Analysis

crosstable()

Cross Tables

crosstableClass

Cross Table

histopathology

histopathology

reportcat()

Summary of Categorical Variables

reportcatClass

Summary of Categorical Variables

summarydata()

Summary of Continuous Variables

summarydataClass

Summary of Continuous Variables

tableone()

Table One

tableoneClass

Table One

venn()

Venn Diagram

vennClass